当前看点!Pytorch中的图像增广transforms类和预处理方法

目录
1.随机翻转(水平和垂直)2.随机裁剪缩放3.随机修改颜色(颜色抖动)4.将图像转化为张量5.标准化操作6.同时结合多种增广方法

1.随机翻转(水平和垂直)

torchvision.transforms.RandomVerticalFlip函数和torchvision.transforms.RandomHorizontalFlip函数是两个可以实现数据增强的函数,可以将输入的图像进行随机垂直翻转和随机水平翻转,从而增加数据集的多样性。


(资料图片)

具体来说,torchvision.transforms.RandomVerticalFlip函数可以将输入图像在垂直方向上进行随机翻转,而torchvision.transforms.RandomHorizontalFlip函数可以将输入图像在水平方向上进行随机翻转。这两个函数都可以通过设置参数来控制翻转的概率。

下面是这两个函数的使用方法:

import torch
import torchvision.transforms as transforms

# 定义随机垂直翻转和随机水平翻转的概率
vflip_probability = 0.5  # 随机垂直翻转的概率
hflip_probability = 0.5  # 随机水平翻转的概率

# 定义图像变换
transform = transforms.Compose([
    transforms.RandomVerticalFlip(p=vflip_probability),
    transforms.RandomHorizontalFlip(p=hflip_probability)
])

在上述代码中,我们首先通过transforms.Compose函数定义了一个图像变换的序列,其中包含了随机垂直翻转和随机水平翻转两个操作。

2.随机裁剪缩放

torchvision.transforms.RandomResizedCrop函数可以进行随机裁剪和缩放,从而增加数据集的多样性。在实际使用中,这个函数有许多可调参数,下面是一个更加完整的介绍:

transforms.RandomResizedCrop(
    size,       # 输出图像的大小
    scale=(0.08, 1.0),  # 缩放范围,将输入图像按照该范围内的随机比例缩放
    ratio=(3.0/4.0, 4.0/3.0),   # 长宽比范围,将输入图像按照该范围内的随机比例进行裁剪
    interpolation=2     # 缩放时使用的插值方法,可选1、2、3、4中的一个,默认为PIL.Image.BILINEAR
)

下面是各个参数的详细介绍:

size:输出图像的大小,可以是一个整数,表示输出图像的边长,或者是一个二元组,表示输出图像的宽和高。例如,如果设置size=224,则输出图像的大小为 224 × 224 224\times224 224×224;如果设置size=(256,192),则输出图像的大小为 256 × 192 256\times192 256×192。scale:缩放范围,将输入图像按照该范围内的随机比例缩放。该参数是一个二元组,表示缩放比例的范围,例如(0.08,1.0)表示将输入图像缩放到原来的 0.08 0.08 0.08到 1.0 1.0 1.0倍之间的随机比例。默认值为(0.08, 1.0)。ratio:长宽比范围,将输入图像按照该范围内的随机比例进行裁剪。该参数是一个二元组,表示长宽比的范围,例如(3.0/4.0,4.0/3.0)表示将输入图像按照宽高比在 3 / 4 3/4 3/4到 4 / 3 4/3 4/3之间的随机比例进行裁剪。默认值为(3.0/4.0, 4.0/3.0)。interpolation:缩放时使用的插值方法,可选1、2、3、4中的一个,分别表示PIL.Image.NEAREST、PIL.Image.BILINEAR、PIL.Image.BICUBIC和PIL.Image.LANCZOS。默认值为PIL.Image.BILINEAR。

3.随机修改颜色(颜色抖动)

在PyTorch中,torchvision.transforms.RandomColorJitter函数可以用于对图像进行随机颜色抖动,增加数据集的多样性。这个函数可以随机地改变图像的亮度、对比度、饱和度和色相,并且还可以随机地进行灰度化操作。下面是该函数的参数:

transforms.RandomColorJitter(
    brightness=0.1,    # 亮度调整的强度,默认值为0.1
    contrast=0.1,      # 对比度调整的强度,默认值为0.1
    saturation=0.1,    # 饱和度调整的强度,默认值为0.1
    hue=0.1,           # 色相调整的强度,默认值为0.1
    p=0.5,             # 执行颜色抖动的概率,默认值为0.5
)

下面是各个参数的详细介绍:

brightness:亮度调整的强度。默认值为0.1。如果设置为0,则不进行亮度调整。contrast:对比度调整的强度。默认值为0.1。如果设置为0,则不进行对比度调整。saturation:饱和度调整的强度。默认值为0.1。如果设置为0,则不进行饱和度调整。hue:色相调整的强度。默认值为0.1。如果设置为0,则不进行色相调整。p:执行颜色抖动的概率。默认值为0.5。如果设置为1,则每个图像都会执行颜色抖动。

4.将图像转化为张量

在PyTorch的torchvision库中,ToTensor函数是一种将PIL Image或numpy.ndarray格式的图像转换为PyTorch Tensor格式的函数。它可以将图像中的像素值转换为0到1之间的标准化数值,并调整图像的通道顺序,使其符合PyTorch模型的输入要求。

ToTensor函数的使用方法如下:

from torchvision.transforms import ToTensor
transform = ToTensor()

一般来说,在使用Compose组合在一起的一组transform中,ToTensor函数应该放在最后一个位置,以便将图像转换为PyTorch Tensor格式的图像,并确保其他所有的transform都在Tensor转换之前完成。

5.标准化操作

在PyTorch的torchvision.transforms库中,Normalize函数是一种对图像进行标准化处理的函数。它可以将图像中的像素值进行归一化处理,使得图像的像素值均值为0,标准差为1,从而增强模型的收敛速度和泛化性能。

Normalize函数的使用方法如下:

from torchvision.transforms import Normalize
transform = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

在上述代码中,我们首先导入了Normalize函数,并创建了一个名为transform的Normalize对象。其中,meanstd参数分别代表图像各通道像素值的平均值和标准差。在这里,我们以ImageNet数据集的图像均值和标准差为例进行了设置。

需要注意的是,Normalize函数应该在图像转换为PyTorch Tensor格式之后应用,即在ToTensor之后。这是因为Normalize需要对每个通道的像素值进行标准化,而ToTensor函数将图像中的像素值转换为PyTorch Tensor格式后,每个通道的像素值将存储在不同的维度上,因此才需要在ToTensor之后进行标准化处理。

6.同时结合多种增广方法

在PyTorch的torchvision库中,Compose函数是一种将多个数据增强操作组合在一起的函数。它可以将多个数据增强操作按照一定的顺序组合在一起,并将它们作为一个整体应用于数据集中的每个样本。Compose函数可以帮助我们方便地实现复杂的数据增强操作,同时也可以使我们的代码更加简洁和易读。

Compose函数的使用方法如下:

from torchvision.transforms import Compose
from torchvision.transforms import RandomCrop, RandomHorizontalFlip, ToTensor

transform = Compose([
    RandomCrop(32),
    RandomHorizontalFlip(),
    ToTensor()
])

在上述代码中,我们首先导入了Compose函数和其他一些数据增强操作,然后创建了一个名为transform的Compose对象。该Compose对象由三个数据增强操作组成:随机裁剪(RandomCrop),随机水平翻转(RandomHorizontalFlip)和转换为Tensor格式(ToTensor)。

到此这篇关于Pytorch中的图像增广和预处理方法(transforms类)的文章就介绍到这了,更多相关Pytorch图像增广和预处理内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

关键词:

为您推荐

当前看点!Pytorch中的图像增广transforms类和预处理方法

这篇文章主要介绍了Pytorch中的图像增广和预处理方法(transforms类),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的

来源:脚本之家2023-04-03

环球快看:RTX 3060异军突起占据榜首!Steam三月软硬件调查出炉

在二月的Steam软硬件调查中,位居榜首的还是GTX1650,颇有稳压GTX1060一头,晋升新一代神卡”的势态。但所有人都没有想到的是,在三月的Steam

来源:快科技2023-04-03

今亮点!【赚麻了】格拉利什代言不断,每周工资加商业收入达到75万镑

《太阳报》发文向球迷介绍格拉利什的收入。首先,格拉利什与彪马签订了一份巨额合同,每年的代言金额高达1000万英镑。据相关人士透露,格拉利

来源:直播吧2023-04-01

新资讯:速度600km/h!我国自主研制的高温超导电动悬浮交通系统悬浮运行

记者3月31日从中车长春轨道客车股份有限公司获悉,由这家企业自主研制的高温超导电动悬浮全要素试验系统完成首次悬浮运行,为下一步工程化应用

来源:新华社2023-04-01

世界资讯:壹石通:3月31日融资净买入55.65万元,连续3日累计净买入400.79万元

3月31日,壹石通(688733)融资买入483 24万元,融资偿还427 59万元,融资净买入55 65万元,融资余额2 6亿元,近3个交易日已连续净买入累计400

来源:证券之星2023-04-01

全球热消息:中金公司公布2022年度业绩,深度服务国家战略

3月31日晚间,中金公司披露2022年年度报告。2022年,中金公司年末总资产为人民币6,487 64亿元,净资产为人民币991 88亿元,实现营业收入人民币

来源:金融界2023-04-01

世界今头条!今日psp战神1攻略完整版(PSP战神1地狱攻略)

psp战神1攻略完整版,PSP战神1地狱攻略很多人还不知道,现在让我们一起来看看吧!1、刚到地狱时,在记忆点旁边有一片颜色较浅的墙,哪里可以爬

来源:互联网2023-04-01

【世界热闻】股票行情快报:百洋医药(301015)3月31日主力资金净卖出257.60万元

截至2023年3月31日收盘,百洋医药(301015)报收于26 75元,上涨2 57%,换手率1 0%,成交量1 18万手,成交额3139 57万元。

来源:证券之星2023-04-01